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Finite-size corrections of an integrable chain with
alternating spins

B-D Dörfel† and St Meissner‡
Institut für Physik, Humboldt-Universität, Theorie der Elementarteilchen, Invalidenstrasse 110,
10115 Berlin, Germany

Received 23 September 1996, in final form 9 December 1996

Abstract. In this paper we calculate the finite-size corrections of an anisotropic integrable spin
chain, consisting of spinss = 1 ands = 1

2 . The calculations are done in two regions of the
phase diagram with respect to the two couplingsc̄ and c̃. In the case of conformal invariance
we obtain the final answer for the ground state and its lowest excitations, which generalizes
earlier results.

1. Introduction

In 1992 de Vega and Woynarovich constructed the first example of a spin chain with
alternating spins of the valuess = 1

2 and s = 1 [1] on the basis of the well known
XXZ( 1

2) model. We call this modelXXZ( 1
2, 1). Later on many interesting generalizations

were presented [2–4]. After de Vegaet al [5, 6] we studied theXXZ( 1
2, 1) model in two

subsequent publications [7, 8]. In our last paper [8] we determined the ground state for
different values of the two couplings̄c and c̃ (for the details see section 3 of that paper).
Disregarding two singular lines we have found four regions in the (c̄, c̃)-plane which can
be divided into two classes. The division is made with respect to the occurance of finite
Fermi zones for Bethe ansatz roots. Only the two regions with infinite Fermi zones have
been widely studied [1, 7] in the framework of Bethe ansatz. On that basis we consider
the finite-size corrections for the ground state and its lowest excitations using standard
techniques [9–11]. It is remarkable that they allow us to obtain an explicit answer only in
the conformally invariant cases, which are contained in the two regions considered. The
results can easily be compared with the predictions of conformal invariance.

The paper is organized as follows. Definitions are reviewed in section 2. In section 3
we calculate the finite-size corrections for both couplings negative. The same is done in
section 4 for positive couplings. Here it was necessary to setc̄ = c̃ to obtain explicit
answers. Section 5 contains interpretation of the results and our conclusions.

2. Description of the model

We consider the Hamiltonian of a spin chain of length 2N with N even:

H(γ ) = c̄H̄(γ )+ c̃H̃(γ ). (2.1)
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The two Hamiltonians can (implicitly) be found in [1], they both contain a two-site and a
three-site coupling part. Their explicit expressions are rather lengthy and do not provide
any further insights. They include a XXZ-type anisotropy parametrized by eiγ ; we restrict
ourselves to 0< γ < π/2. The isotropic limitXXX( 1

2, 1) is contained in [2]. The
two real coupling constants̄c and c̃ dominate the qualitative behaviour of the model. The
interaction favours antiparallel orientation of spins, for equal signs of the couplings its
character resembles the ordinaryXXZ model. A new kind of competition comes in for
different signs of couplings where the ground state is still a singlet, but with a much more
involved structure.

The Bethe ansatz equations (BAE) determining the solution of the model are(
sinh(λj + 1

2iγ )

sinh(λj − 1
2iγ )

sinh(λj + iγ )

sinh(λj − iγ )

)N
= −

M∏
k=1

sinh(λj − λk + iγ )

sinh(λj − λk − iγ )
j = 1, . . . ,M. (2.2)

One can express energy, momentum and spin projection in terms of the BAE rootsλj :

E = c̄Ē + c̃Ẽ

Ē = −
M∑
j=1

2 sinγ

cosh 2λj − cosγ

Ẽ = −
M∑
j=1

2 sin 2γ

cosh 2λj − cos 2γ

(2.3)

P = i

2

M∑
j=1

{
ln

(
sinh(λj + 1

2iγ )

sinh(λj − 1
2iγ )

)
+ ln

(
sinh(λj + iγ )

sinh(λj − iγ )

)}
(2.4)

Sz = 3
2N −M. (2.5)

We have defined energy and momentum to vanish for the ferromagnetic state. The
momentum operator was chosen to be half of the logarithm of the two-site shift operator [2],
which is consistent with taking the length of the system as 2N instead ofN .

3. Calculation of finite-size corrections for negative couplings

In section 3 of [8] we carried out a detailed analysis of the thermodynamic Bethe ansatz
equations (TBAE) at zero temperature and obtained the ground state.

We found a large antiferromagnetic region in the (c̄, c̃)-plane (depending onγ ) where
the ground state is formed by roots with imaginary parts1

2π , the so-called (1,−) strings.
The Fourier transform of their density is given [7] by

ρ̂0(p) = 1+ 2 cosh(pγ /2)

2 cosh(p(π − γ )/2) . (3.1)

Depending on the signs ofc̃ and c̄ the region is described by the connection of three parts:

(a) c̃ 6 0 c̄ 6 0 (3.2a)
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(b) c̃ < 0 c̄ > 0

c̄

|c̃| 6
1

2 cosγ̃
for 0< γ 6 2π

5

c̄

|c̃| 6 2 cosγ̃ for
2π

5
6 γ < π

2

(3.2b)

(c) c̃ > 0 c̄ < 0

|c̄|
c̃
> 8 cos3 γ̃

4 cos2 γ̃ − 1
for 0< γ 6 π

3

|c̄|
c̃
> 2

cosγ̃
for

π

3
6 γ < π

2
.

(3.2c)

Here for brevity we have introduced

γ̃ = πγ

2(π − γ ) . (3.3)

We shall now calculate the finite-size corrections for the ground state and its excitations.
In [7] the structure of excitations in the framework of the BAE roots was obtained for
c̃ < 0, c̄ < 0. Our results immediately apply to the whole region (3.2), because we had to
ensure only that the ground state consists of (1,−) strings which follows from the TBAE.

Since we are interested only in the lowest excitations, we disregard the bound states [7]
and consider those excitations given by holes in the ground-state distribution which are
located to the right (or left) of the real parts of all roots. The number of those holes we
call H+ (H−). We follow the standard techniques developed in [9, 10].

For transparency we employ the notation of [11] as much as possible. We decompose

σN = ρ(1)0 + ρ(2)0 +1σN (3.4)

where the upper index describes the two terms on the right-hand side of equation (3.1). The
basic equations are then

1EN

2N
≡ eN = c̄π

∫ ∞
−∞

dλ ρ(1)0 (λ)

{
1

N

∑
k

δ(λ− λk)− σN(λ)
}

+c̃π
∫ ∞
−∞

dλ ρ(2)0 (λ)

{
1

N

∑
k

δ(λ− λk)− σN(λ)
}

(3.5)

and

1σN(λ) = −
∫ ∞
−∞

dµ p̄(λ− µ)
{

1

N

∑
k

δ(λ− λk)− σN(λ)
}

(3.6)

where the Fourier transform of the kernelp̄(λ) is given by

P̄ (ω) = − sinh((π/2− γ )ω)
2 sinh(ωγ /2) cosh(ω(π/2− γ /2)) . (3.7)

The summation on the right-hand side of (3.5) and (3.6) is carried out over the real parts of
all the roots (without the holes). Using the Euler–MacLaurin formula, equations (3.5) and
(3.6) are rewritten as usual, e.g.,
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σN(λ)− ρ(1)0 (λ)− ρ(2)0 (λ)

=
∫ ∞
3+

dµ σN(µ)p̄(λ− µ)− 1

2N
p̄(λ−3+)+ 1

12N2

1

σN(3+)
p̄(λ−3+)

(
+
∫ 3−

−∞
dµ σN(µ)p̄(λ− µ)− 1

2N
p̄(λ−3−)

− 1

12N2

1

σN(3−)
p̄(λ−3−)

)
. (3.8)

Here3+ (3−) is the real part of the largest (smallest) root. Forλ > 3+ the part in round
brackets can be omitted and after a shift equation (3.8) converts into a standard Wiener–
Hopf problem to be solved. In the expression for1EN both parts have to be kept, so we
need the solution forλ > 3+ and λ 6 3−, which are simply related (but not equal) by
symmetry.

For the solution withλ > 3+, as usual we define

X±(ω) =
∫ ∞
−∞

eiωλσ±N (λ+3+) dλ (3.9)

σ±N (λ+3+) =
{
σN(λ+3+) for λ ≷ 0

0 for λ ≶ 0.
(3.10)

After Fourier transformation equation (3.8) takes the form

X−(ω)+ (1− P̄ (ω))(X+(ω)− C̄(ω)) = F̄+(ω)+ F̄−(ω)− C̄(ω) (3.11)

where we have marked all given functions of our problem by a bar.F̄±(ω) are defined as
above using instead ofσN the sumρ(1)0 + ρ(2)0 . Moreover

C̄(ω) = 1

2N
+ iω

12N2σN(3+)
. (3.12)

Now we have to factorize the kernel

[1− P̄ (ω)] = Ḡ+(ω)Ḡ−(ω) (3.13)

with Ḡ±(ω) holomorphic and continuous in the upper and lower half-planes, respectively.
Noting that

P̄ (ω, γ ) = K(ω, π − γ ) (3.14)

whereK is the analogous function in [11], we take the factorization from there:

Ḡ+(ω) =
√

2γ0

(
1− iω

2

)
eψ̄(ω)

[
0

(
1

2
− i(π − γ )ω

2π

)
0

(
1

2
− iγω

2π

)]−1

= Ḡ−(−ω)
(3.15)

ψ̄(ω) = iω

2

[
ln

(
π

γ

)
− π − γ

π
ln

(
π − γ
γ

)]
. (3.16)

It is chosen to fulfill

Ḡ+(ω)
|ω|→∞∼ 1+ ḡ1

ω
+ ḡ2

1

2ω2
+O

(
1

ω3

)
(3.17)
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where

ḡ1 = i

12

(
2+ π

π − γ −
2π

γ

)
. (3.18)

After the necessary decomposition

Ḡ−(ω)F̄+(ω) = Q̄+(ω)+ Q̄−(ω) (3.19)

equation (3.11) has the desired form

X+(ω)− C̄(ω)
Ḡ+(ω)

− Q̄+(ω) = Q̄−(ω)− Ḡ−(ω)
[
X−(ω)+ C̄(ω)− F̄−(ω)

] ≡ P̄ (ω) (3.20)

leading to an entire function̄P(ω) given by its asymptotics.

P̄ (ω) = iḡ1

12N2σN(3+)
− 1

2N
− iω

12N2σN(3+)
. (3.21)

Equation (3.20) yields the solution forX+(ω):

X+(ω) = C̄(ω)+ Ḡ+(ω)
[
P̄ (ω)+ Q̄+(ω)

]
. (3.22)

For our purposes it is sufficient to put

F̄+(ω) =
exp

(
π3+/(π − γ ))

π − iω(π − γ ) (1+ 2 cosγ̃ ) (3.23)

and hence

Q̄+(ω) =
Ḡ+(iπ/(π − γ )) exp

(−π3+/(π − γ ))(1+ 2 cosγ̃ )

π − iω(π − γ ) . (3.24)

Next we must determine by normalization the value of the integral∫ ∞
3+
σN(λ) dλ = zN(∞)− zN(3+).

After a thorough analysis we found for our case that the relation

H

2
= H+ +H−

2
=
[
νS + 1

2

]
(3.25)

holds whereν = γ /π . Nevertheless, we shall not claim that equation (3.25) holds for all
possible states [10]; in particluar we expect effects like those described in [12] for higher
excitations. Then we have

zN(±∞)− zN(3±)= ± 1

N

(
1

2
+ νSz ± H

+ −H−
2

)

≡ ± 1

N

(
1

2
±1±

)
(3.26)

yielding the important equation

Ḡ+(iπ/(π − γ )) exp
(−π3+/(π − γ ))(1+ 2 cosγ̃ )

π

= 1

2N
− iḡ1

12N2σN(3+)
+ 1

N

1√
2ν
1+. (3.27)
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The other normalization equation is obviously

σN(3
+) = ḡ2

1

24N2σN(3+)
+ iḡ1

2N
+ Ḡ+(iπ/(π − γ ))

π − γ exp
(−π3+/(π − γ ))(1+ 2 cosγ̃ ).

(3.28)

Now we can proceed in the usual way, keeping in mind the changes arising especially from
the last two equations:

1EN

2N
= − π

π − γ (c̄ + 2c̃ cosγ̃ )Ḡ+

(
iπ

π − γ
)[
P̄

(
iπ

π − γ
)

+ Q̄+
(

iπ

π − γ
)]

exp
(−π3+/(π − γ ))+ (3+ ↔ 3−

)
. (3.29)

After some algebra using equations (3.27) and (3.28), this turns out as

1EN

2N
= − π2

π − γ
(c̄ + 2c̃ cosγ̃ )

1+ 2 cosγ̃

{(
− 1

24N2
+ 1

4N2ν
(1+)2

)

+
(
− 1

24N2
+ 1

4N2ν
(1−)2

)}
. (3.30)

Finally, for further interpretation we put it in the form

1EN

2N
= −2c̄ + 4c̃ cosγ̃

1+ 2 cosγ̃

π

π − γ
{
−π

6

1

4N2
+ 2π

4N2

(
S2
z ν

2
+ 1

2

2ν

)}
(3.31)

with 1 = (H+ −H−)/2 as an integer number.
The momentum correction1PN is obtained from relation (3.5) after substituting the

hole energyεh = −2c̄πρ(1)0 − 2c̃πρ(2)0 by the hole momentum (see [8])

ph(λ) = 1
2 arctan(sinh(πλ)/(π − γ ))+ arctan(sinh(πλ)/(π − γ ))/ cosγ̃ )+ constant.

Comparing the asymptotics for largeλ of bothεh(λ) andph(λ) gives the speed of sound
and helps to shorten the calculation of1PN . Therefore

1PN

2N
= π

2

{
1

4N2ν

[
(1−)2− (1+)2]}+ constant. (3.32)

We are not interested in the constant term, it being some multiple ofπ .
Finally

1PN = − 2π

2N
Sz1. (3.33)

The interpretation of our result will be given in section 5. We stress once more that to
obtain equations (3.31) and (3.33) it was not necessary to putc̄ = c̃. The coupling constants
are only constrained to stay in the region (3.2).

4. Calculation of finite-size corrections for positive couplings

Now we consider region̄c > 0, c̃ > 0 and rely on the analysis of [1].
The ground state is given by two densitiesσ (1/2)N (λ) for the real roots andσ (1)N (λ) for

the real parts of the (2,+) strings. One has

σ (1/2)∞ (λ) = σ (1)∞ (λ) =
1

2γ cosh(πλ/γ )
≡ s(λ). (4.1)
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The physical excitations are holes in those distributions. As in section 3 we consider only
holes situated to the right (or left) of all roots. With the usual technique and the results of
[1] we have obtained after some lengthy but straightforward calculations the basic system
for the density corrections

1σ
(1/2)
N (λ) = −

∫ ∞
−∞

dµ s(λ− µ)
{

1

N

M1∑
j=1

δ(µ− ξj )− σ (1)N (µ)

}

1σ
(1)
N (λ) = −

∫ ∞
−∞

dµ s(λ− µ)
{

1

N

M1/2∑
i=1

δ(µ− λi)− σ (1/2)N (µ)

}

−
∫ ∞
−∞

dµ r(λ− µ)
{

1

N

M1∑
j=1

δ(µ− ξj )− σ (1)N (µ)

}
.

(4.2)

We have denoted the real roots byλi (their number isM1/2) and the real parts of the strings
by ξj (their number isM1). The functionr(λ) is given via its Fourier transform

R(ω) = sinh(ω(π − 3γ )/2)

2 sinh(ω(π − 2γ )/2) cosh(ωγ /2)
. (4.3)

The energy correction takes the form

1EN

2N
= −πc̄

∫ ∞
−∞

dλ s(λ)

{
1

N

M1/2∑
i=1

δ(λ− λi)− σ (1/2)N (λ)

}

−πc̃
∫ ∞
−∞

dλ s(λ)

{
1

N

M1∑
j=1

δ(λ− ξj )− σ (1)N (λ)

}
. (4.4)

Once again we shall follow [11]. The maximum (minimum) real roots we call3±1/2 and for
the strings we use3±1 , respectively. Instead of oneC(ω) we now haveC1(ω) andC1/2(ω)

generalized in an obvious way. The same applies toF(ω). The main mathematical problem
is the factorization of a matrix kernel

(1−K(ω))−1 = G+(ω)G−(ω) with G−(ω) = G+(−ω)T (4.5)

(see [5]) and

K(ω) =
(

0 S(ω) exp
(−iω(3+1 −3+1/2)

)
S(ω) exp

(
iω(3+1 −3+1/2)

)
R(ω)

)
. (4.6)

G+ is now a matrix function andGT
+ stands for its transposition. The two-component vector

Q+(ω) (see equation (3.19)) is

Q+(ω) = G+(iπ/γ )T

π − iωγ

(
exp

(−π3+1/2/γ )
exp

(−π3+1 /γ )
)
. (4.7)

As usual we define the constant matricesG1 andG2 by

G+(ω)
|ω|→∞−→ 1+G1

1

ω
+G2

1

ω2
+O

(
1

ω3

)
(4.8)

and as before one has

G2 = 1
2G

2
1. (4.9)
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The two-component vectorP(ω) is then

P(ω) =


− 1

2N
− iω

12N2σ
(1/2)
N (3+1/2)

− 1

2N
− iω

12N2σ
(1)
N (3+1 )

+G1


i

12N2σ
(1/2)
N (3+1/2)

i

12N2σ
(1)
N (3+1 )

 (4.10)

and therefore the shifted densities are expressed in the form(
X+1/2(ω)

X+1 (ω)

)
=
(
C1/2(ω)

C1(ω)

)
+G+(ω)

[
P(ω)+Q+(ω)

]
. (4.11)

Now it is necessary to find the analogue of equation (3.26) for the two counting functions.
Here it would be necessary to consider different cases depending on the fractions ofνSz/N

or 2νSz/N . From our experience we know that the result of the finite-size corrections does
not depend on those fractions, while relations like (3.25) obviously do. As we are interested
only in the former, we shall proceed as straightforwardly as possible and consider only the
case with vanishing: fractions.

z
(1/2)
N (±∞)− z(1/2)N (3±1/2) = ±

1

N

(
1

2
− νSz +H±1/2

)
(4.12)

z
(1)
N (±∞)− z(1)N (3±1 ) = ±

1

N

(
1

2
− 2νSz +H±1

)
. (4.13)

Easy counting leads to expressions for the numbers of the holes:

H1 = 2Sz

H1/2 = 2Sz + 2M1−N.
(4.14)

We expect modifications to these for non-vanishing fractions. We stress that both numbers
are even.

Equation (3.27) is now more complicated:

G+(iπ/γ )T

π

(
exp

(−π3+1/2/γ )
exp

(−π3+1 /γ )
)
= G−1

+ (0)B
+ +


1

2N
1

2N

− iG1


1

12N2σ
(1/2)
N (3+1/2)

1

12N2σ
(1)
N (3+1 )


(4.15)

with the definitions

B± =
(
B±1
B±2

)
= 1

N

( −νSz +H±1/2
−2νSz +H±1

)
= 1

N

(
Sz − νSz +M1− 1

2N ±1(1/2)

Sz − 2νSz ±1(1)

)
(4.16)

and

1(i) = H+i −H−i
2

. (4.17)

The other normalization condition is obviously(
σ
(1/2)
N (3+1/2)

σ
(1)
N (3+1 )

)
= G2

1

2


1

12N2σ
(1/2)
N (3+1/2)

1

12N2σ
(1)
N (3+1 )

+ iG1


1

2N
1

2N



+ G+(iπ/γ )
T

γ

(
exp

(−π3+1/2/γ )
exp

(−π3+1 /γ )
)
. (4.18)
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After combining equations (4.18) and (4.15), from equation (4.4) we obtain

1EN

2N
= π

γ

(
c̄ exp

(
π3+1/2/γ

)
c̃ exp

(
π3+1 /γ

) )T

G+

(
iπ

γ

)[
−1

2

(
1/2N

1/2N

)

+
(

1

2
iG1+ π

γ

)( 1/12N2σ
(1/2)
N (3+1/2)

1/12N2σ
(1)
N (3+1 )

)
+ 1

2
G−1
+ (0)B

+
]

+ (3+ ↔ 3−, B+ ↔ B−). (4.19)

This result is valid for any positivēc andc̃. As in [5] no further progress can be made unless
the factorization is explicitly known, which up to now has not been the case. Forc̄ = c̃ = c
(conformal invariance) the problem simplifies and the final answer can be obtained.

After some lengthy calculations one arrives at

1EN

2N
= π2c

γ

[
− 1

12N2
+ 1

2

((
B+1 − B+2

)2+ B+1 B+2 − (B+2 )2
π − 3γ

2(π − 2γ )

)]
+ (B+ ↔ B−)

(4.20)

which can be simplified to give

1EN

2N
= 2πc

γ

{
−π

6

2

4N2
+ 2π

4N2

[
1

4
(1− 2ν)S2

z +
1

4

(
H1/2− H1

2

)2

+ (1(1/2))2−1(1/2)1(1) + 1

2
(1(1))2

1− ν
1− 2ν

]}
. (4.21)

For c̄ 6= c̃ we expect the result to be much more complicated, but of the same order 1/N2.
As above the momentum correction is given from relation (4.4) after replacingε

(1/2)
h =

2c̄πs(λ) by p(1/2)h = arctan eπλ/γ andε(1)h = 2c̃πs(λ) by p(1)h = arctan eπλ/γ . The values of
the hole momenta are taken from [1] where an additionel factor1

2 must be introduced to
take into account our definition of momentum (2.4).

As in section 3, comparing the asymptotics forc̄ = c̃ gives the speed of sound and,
together with equation (4.20), the momentum correction

1PN

2N
= π

2

{
1

2

[(
B−1 − B−2

)2− (B+1 − B+2 )2

+ B−1 B
−
2 − B+1 B+2 − ((B−1 )2− (B+1 )2)

π − 3γ

2(π − 2γ )

]}
+ constant. (4.22)

Disregarding the constant (multiple ofπ ) we have

1PN = π

2

{
−1(1/2)

(
H1/2− H1

2

)
−1(1)

(
H1

2
− H1/2

2

)}
. (4.23)

5. Conclusions

In sections 3 and 4 we have determined the finite-size corrections of our model for two
different cases. Equations (3.31) and (3.33) give the result for region (3.2), while equations
(4.21) and (4.23) are valid for̄c = c̃ = c > 0. In both cases we have conformal invariance.
That seems to be the reason why during the calculations many terms cancel each other and
the result is simplified considerably.
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From the asymptotics ofεh andph we find

vs = − 2π

π − γ
c̄ + 2c̃ cosγ̃

1+ 2 cosγ̃
> 0 (5.1)

for the speed of sound and from relation (3.31) the value of 1 for the central charge.
Equation (5.1) generalizes the former result obtained for equal (but negative) couplings [8].
Analogously it follows that

vs = 2cπ

γ
(5.2)

and the central charge equals 2 [1].
For completeness, we mention the heat capacities per site at low temperature given by

C = cvT π

3vs
(5.3)

where we have denoted the central charge bycv to avoid confusion. Therefore

C = − 1+ 2 cosγ̃

c̄ + 2c̃ cosγ̃

(π − γ )T
6

(5.4)

and

C = γ T

3c
(5.5)

in agreement with former results [8]. Equation (5.4) generalizes our calculations forc̄ = c̃.
The dimensionsxn and the spinssn of the primary operators follow from equations

(3.31) and (3.33):

xn = S2
z ν

2
+ 1

2

2ν
(5.6)

sn = Sz|1| (5.7)

for negative coupling. It is interesting to compare this with the result for theXXZ( 1
2)model,

whereν is simply replaced by 1− ν. Equations (5.6) and (5.7) have to be understood in
the way that for general excited states (arbitrary holes and complex roots)Sz and1 are
replaced by more complicated integer numbers [10].

For positive couplings

xn = 1

4
(1− 2ν)S2

z +
1

4

(
H1/2− H1

2

)2

+ (1(1/2)
)2−1(1/2)1(1) + 1

2

(
1(1)

)2 1− ν
1− 2ν

.

(5.8)

Whenν → 0 the first two terms agree with [4], while the other terms are connected with the
asymmetry of the state which was not considered there. The dimension of a general primary
operator depends on four integer numbers. The second of them measures an asymmetry
between the number of holes among real roots or strings, respectively. Once more, for more
complicated states the integers in equation (5.8) are replaced by other ones depending on
the concrete structure of the state. We mention that relation (5.8) can be ‘diagonalized’ to
resemble the expression of two models both of central charge 1:

xn = 1

2

(1− 2ν)

2
S2
z +

1

2

(
H1/2−H1/2

)2

2
+ 1

2
212

1+
1

2

2

1− 2ν
12

2 (5.9)
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with

11 = 1(1/2) − 1
21

(1)

12 = 1
21

(1).
(5.10)

Expression (5.9) becomes even more symmetric if one remembers the first equation of (4.14)
and the definition (4.17). Then twice a certain number of holes is linked with its appropriate
asymmetry.

From equation (4.23) the spins of the primary operators are

sn =
∣∣∣∣1(1/2)

(
H1/2− H1

2

)
+1(1)

(
H1

2
− H1/2

2

)∣∣∣∣ (5.11)

and after using (5.10)

sn =
∣∣∣∣11

(
H1/2− H1

2

)
+12Sz

∣∣∣∣ (5.12)

with the same symmetry as relation (5.9).
Finally, we determine the magnetic susceptibilities per site at zero temperature and

vanishing field from our finite-size results. That can be done, because the states we
have considered include those with minimum energy for a givenSz (magnetization) [13].
Differentiating twice the energy with respect toSz gives the inverse susceptibility.

Hence

χ = π − γ
4πγ

(
− 1+ 2 cosγ̃

c̄ + 2c̃ cosγ̃

)
= 1

vs

1

2γ
(5.13)

and

χ = 1

2cπ

1

π − 2γ
= 1

vs

1

π − 2γ
(5.14)

respectively for the two cases, in agreement with earlier results [4, 5, 8]. Expression (5.13)
for general couplings in the region (3.2) had not been derived before.
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